
 

 

  
Abstract—The principal aim of this paper is to present an 

algebraic approach to design of single-input single-output 
continuous-time controllers under assumption of two-degree-of-
freedom (2DOF) closed-loop control system. The method of 
synthesis is based mainly on description of systems in the ring of 
proper and Hurwitz-stable rational functions (RPS), Youla-Kučera 
parameterization of all stabilizing controllers and divisibility 
conditions in RPS. One of advantages of the proposed approach is the 
utilization of the single tuning parameter. The work contains the 
computation and simulation examples which cover the selected cases 
of only asymptotic tracking of reference signal or also disturbance 
rejection for first-order and third-order controlled plants. 
 
Keywords—2DOF Control Structure, Algebraic Approach, 

Controller Design, Linear Systems.  

I. INTRODUCTION 
HE control systems with two degrees of freedom (2DOF) 
contain the controllers with both feedback and 

feedforward parts. They have substantial advantages in 
comparison with traditional one-degree-of-freedom (1DOF) 
configurations, particularly thanks to separation of feedback 
part (responsible for stabilization and disturbance rejection) 
and feedforward part (responsible for reference tracking). 
Thus, the 2DOF structures are very convenient for solving the 
tasks of disturbance rejection and reference tracking 
simultaneously [1] – [3]. 

Quite obviously, the topic of 2DOF control systems and 
their suitable synthesis has attracted the attention of many 
researchers during the last years and decades. Among an array 
of existing methods (see e.g. [1] – [5]), the described algebraic 
approach [6] – [10] based on the works [11] and [12] 
represents easy but effective solution with just one tuning 
parameter influencing the final control response. Furthermore, 
the problems related to robustness of designed control loops 
are frequent object of researchers’ and engineers’ interest [13] 
– [18]. 

The main aim of this paper is to present a possible approach 
based on algebraic tools for designing 2DOF control systems. 
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The basic theoretical background is followed by computational 
and simulation examples where the sets of variously tuned 
continuous-time controllers are applied to the first and third 
order controlled plants under assumption of either purely 
reference tracking problem or reference tracking and load 
disturbance rejection together. Moreover, the control of the 
plants with perturbed parameters (gains) was also verified. 

The paper is the extended version of the conference 
contribution [19]. 

The paper is organized as follows. The key part of the work 
is the Section 2 which firstly describes a basic theoretical 
background for an algebraic approach to 2DOF control design 
then it is divided into three subsections with illustrative 
examples. They deal successively with controller calculations 
and various simulations for a first order plant and no 
disturbances, a first order plant and step-wise load disturbance 
and a third order plant. Finally, the Section 3 offers some 
conclusion remarks. 

II. ALGEBRAIC APPROACH TO 2DOF CONTROL DESIGN 
The applied control synthesis is based on the algebraic ideas 

of Vidyasagar [11] and Kučera [12]. Subsequently, the specific 
tuning rules has been developed and analyzed e.g. in [6] – [10]. 

The two-degree-of-freedom (2DOF) closed-loop control 
system studied in this contribution is shown in fig. 1. 

 

 
Fig. 1 two-degree-of-freedom control loop 

 
Here, the functions ( )G s , ( )bC s , and ( )fC s  represent 

controlled plant, feedback part of the controller, and 
feedforward part of the controller, respectively. The signals 
w(s), n(s), and v(s) then stand for reference, load disturbance, 
and disturbance signal. 

Generally, the control design technique assumes the 
description of linear systems in fig. 1 not via the common ring 
of polynomials but in the ring of proper and stable rational 
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functions (RPS). The conversion from the ring of polynomials 
to RPS can be performed very simply according to: 
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The parameter m will be later used as a controller tuning 

knob. 
The fundamental relations resulting from fig. 1 are: 
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Next, the simple adjustment gives: 
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Supposing that no disturbances are affecting the control 
system (i.e. ( ) ( ) 0n s v s= = ), the control error is described by: 

 
( ) ( ) ( )( ) ( ) ( ) 1

( ) ( ) ( ) ( ) ( )
w

w

B s R s G se s w s y s
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⎛ ⎞
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 (4) 

 
Assumption of just one-degree-of-freedom (1DOF) control 

structure, which can be obtained simply by putting 
( ) ( )R s Q s= , would change the equation (4) to: 
 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

w

w

A s P s G se s
A s P s B s Q s F s

=
+

 (5) 

 
The primary aim is to guarantee internal stability of the 

closed-loop system. All stabilizing feedback controllers are 
given by all solutions of the linear Diophantine equation: 

 
( ) ( ) ( ) ( ) 1A s P s B s Q s+ =  (6) 
 

with a general solution 0( ) ( ) ( ) ( )P s P s B s T s= + , 

0( ) ( ) ( ) ( )Q s Q s A s T s= − , where T(s) is an arbitrary member of 
RPS and the pair 0 ( )P s , 0 ( )Q s  represents particular solution of 
(6). This principle is known as Youla – Kučera 
parameterization of all stabilizing controllers. More details 
can be found e.g. in [6], [7], [10]. Consequently, relation (4) 
takes the form: 

( ) ( )( ) 1 ( ) ( )
( )

w
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and analogically, (5) can be rewritten for 1DOF case as: 
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The requirement of zero tracking error: 
 

[ ]
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t s
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results in the condition that the expression ( )wF s  must 
disappear from denominator of (7) or (8). Thus, ( )wF s  must 
divide product ( ) ( )A s P s  for 1DOF or ( )wF s  must divide 

term ( )1 ( ) ( )B s R s−  for 2DOF. This condition for 2DOF 
scenario can be formulated by the second Diophantine 
equation: 

 
( ) ( ) ( ) ( ) 1wF s Z s B s R s+ =  (10) 
 

A. Example 1 – first order plant and no disturbances 
The specific process of controller design will be firstly 

demonstrated on the case of step-wise reference with 

( )w
sF s

s m
=

+
, no disturbances, and the first order plant given 

by transfer function: 
 

0

0
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s a
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+

 (11) 

 
The transposition of the transfer functions in RPS gives the 
first Diophantine equation (6) as: 

 
0 0
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Its particular solution is: 
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Then, the set of all stabilizing controllers can be expressed 

by means of Youla-Kučera parameterization: 
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However, the feedback part of the controller in 2DOF 
configuration calculated only by means of particular solution 
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(13), which leads to the P controller: 
 

0

0

( )( )
( )b

Q s qC s
P s p

= =  (15) 

 
will fulfill the requirement of closed loop stability. Then, the 
asymptotic tracking of stepwise reference signal can be 
assured with the assistance of the second Diophantine 
equation (10), now in the specific form: 

 
0

0 0 1s bz r
s m s m

+ =
+ +

 (16) 

 
with particular solution: 

 

0 0
0

; 1mr z
b
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and with general solution (expressed only for the variable R(s) 
which is useful for control design): 

 

0( ) ( )sR s r T s
s m

= +
+

 (18) 

 
where ( )T s  is again an arbitrary term in RPS. For example, 

( ) 0T s =  leads to the feedforward part of the controller: 
 

0
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The final but very important task is the proper choice of the 

tuning parameter 0m > . A possible way of parameter 
selection for 1DOF configuration based on the requested size 
of first overshoot of control output is presented e.g. in [8] – 
[10]. However, this paper will not utilize any exact method for 
the choice of m. It will present more possibilities of m with 
their respective results. 

The application of the obtained rules will be demonstrated 
on the following simulation example. Consider the first order 
controlled plant given by transfer function: 
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Three controllers were successively tuned by the trio of 

parameters m by using the previously derived rules: 
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 (23) 

 
First, the regulators were used for controlling the plant (20) 

without any disturbances. The results are visualized in fig. 2 
which contains the set of output signals and fig. 3 which 
depicts the set of corresponding control signals (manipulated 
variables). 
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Fig. 2 control of system (20) by controllers (21), (22) and (23) – 

without disturbances (output signals) 
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Fig. 3 control of system (20) by controllers (21), (22) and (23) – 

without disturbances (control signals) 
 

Then, the same controllers were applied, but under assumption 
of step load disturbance of size -1 which was injected into the 
output of the controlled plant in 2/3 of simulation time. The 
results are presented in figs. 4 and 5. 
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Fig. 4 control of system (20) by controllers (21), (22) and (23) – with 

step load disturbance -1 (output signals) 
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Fig. 5 control of system (20) by controllers (21), (22) and (23) – with 

step load disturbance -1 (control signals) 
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Fig. 6 control of perturbed system (24) by controllers (21), (22) and 

(23) (output signals) 
 

 

Finally, the gain of the controlled plant (20) used in the 
simulation was supposed by 20% lower, i.e.: 

 
4 0.4( )

10 1 0.1perG s
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= =
+ +

 (24) 

 
The figs. 6 and 7 show the obtained results. 
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Fig. 7 control of perturbed system (24) by controllers (21), (22) and 

(23) (control signals) 
 
As it was demonstrated, the application of the controllers 

(15) and (19) is sufficient for the case of the first order plant 
(11) with step-wise reference signal but only without any 
disturbances and without perturbations. However, if some 
disturbance or change in plant parameters occurs, the 
controller ability of reference tracking fails. Consequently, the 
closed control loop remains stable but keeps the permanent 
control error. 

B. Example 2 – first order plant and step-wise load 
disturbance 

Thus, from the practical viewpoint, it is more convenient to 
design such feedback part of the controller which guarantees 
not only stability of the circuit in fig. 1, but also rejection of 
the disturbance (typically e.g. step-wise load disturbance). The 
appropriate feedback part of the controller from the set (14) 
can be chosen on the basis of divisibility conditions which are 
briefly outlined bellow equation (9). Specifically, now the 

term ( )n
sF s

s m
=

+
 (for step-wise load disturbance signal) 

must disappear from the denominator of tracking error: 
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= + −  (25) 

 
In other words, ( )nF s  must divide ( ) ( )B s P s . So, it has to be 
found appropriate T(s) in (14). The simple adjustment brings 
the fact that complying T(s) is the one and only: 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 7, 2013 633



 

 

0

( ) mT s
b

= −  (26) 

 
Its substitution into (14) results in the numerator and 
denominator: 
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which consequently gives the feedback part of the controller 
in the PI form: 
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Then, the corresponding feedforward controller part can be 

obtained though already derived general solution (18) with 0r  

from particular solution (17) and with parameter ( ) 0T s = . 
The simple calculation leads to: 
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Notice that all controller parameters again depend on the 

“tuning knob” 0m > , generally in a nonlinear way. 
From the practical point of view, the same feedback PI 

controller (28) with the same parameters (29) would be 
calculated for only 1DOF configuration under requirement of 
step-wise reference tracking (without disturbance rejection) 
because ( )wF s  must divide product ( ) ( )A s P s . 

The next simulation example will show the practical 
applicability of the upgraded tuning methodology. Again, 
assume the same first order controlled plant (20). In this case, 
the three controllers were obtained as follows: 
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The corresponding output signals and control signals 

(manipulated variables) for the scenarios without 
disturbances, with step-load disturbance -1 affecting the 
output of the controlled plant, and with system containing 
perturbed gain are depicted in figs. 8 – 13, respectively. 
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Fig. 8 control of system (20) by controllers (32), (33) and (34) – 

without disturbances (output signals) 
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Fig. 9 control of system (20) by controllers (32), (33) and (34) – 

without disturbances (control signals) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 7, 2013 634



 

 

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Time

O
ut

pu
t S

ig
na

ls

 

 

Reference
m=0.2
m=0.5
m=1

 
Fig. 10 control of system (20) by controllers (32), (33) and (34) – 

with step load disturbance -1 (output signals) 
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Fig. 11 control of system (20) by controllers (32), (33) and (34) – 

with step load disturbance -1 (control signals) 
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Fig. 12 control of perturbed system (24) by controllers (32), (33) and 

(34) (output signals) 
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Fig. 13 control of perturbed system (24) by controllers (32), (33) and 

(34) (control signals) 
 
Note that the control responses from figs. 8 and 9 are 

exactly the same as the curves from figs. 2 and 3. As can be 
easily verified, the corresponding closed-loop transfer 
functions are really identical for this ideal case. 

The figs. 10 – 13 clearly prove that the 2DOF controller 
(28) and (30) is able to deal with step-wise load disturbance 
and “small” parameter variations in controlled system. 

C. Example 3 – third order plant 
In order to give the outline of a bit more complicated case 

leading to 2DOF controller with more general transfer 
functions (not only P or PI), in the final example the same 
technique is utilized for designing the regulator for the third 
order plant: 
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The step-wise reference signal and step-wise load disturbance 
(of size -0.1) are considered. The several choices of tuning 
parameter lead to: 
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The visualization of output and control signals is provided by 
fig. 14 and 15. 
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Fig. 14 control of system (35) by controller (36), (37) and (38) 

(output signals) 
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Fig. 15 control of system (35) by controller (36), (37) and (38) 

(control signals) 
 

Finally, the gain of the controlled plant (21) was supposed by 
5% higher, i.e.: 
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The figs. 16 and 17 demonstrate the obtained control results. 
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Fig. 16 control of system (39) by controller (36), (37) and (38) 

(output signals) 
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Fig. 17 control of system (39) by controller (36), (37) and (38) 

(control signals) 

III. CONCLUSION 
The paper has been focused on a possible algebraically-

based approach for synthesis of 2DOF continuous-time 
control systems. The easily applicable tuning rules have been 
fully derived for the first order controlled plant both for just 
reference tracking or also for disturbance rejection problems. 
Their effectiveness has been demonstrated on the set of 
simulation examples for nominal as well as perturbed systems. 
Moreover, the final example has shown the control 
experiment for the third order controlled plant using more 
general third order controllers. 
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